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ON THE SEARCH FOR VARIATIONAL PRINCIPLES 
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Abstract-Several attempts to formulate variational principles for non-self-adjoint and nonlinear systems 
are examined. The variational formulations are found to lack the advantages of genuine variational prin- 
ciples, chiefly because the variational integral is not stationary or because no variational integral exists. The 
corresponding variational methods of approximation are shown to be equivalent to the more straight- 
forward Galerkin method or another closely related version of method of weighted residuals. The methods 
due to Rosen (restricted variations), Glansdorff and Prigogine (local potential), and Biot (Lagrangian 
thermodynamics) are treated. It is concluded that there is no practical need for variational formulations 

of the sort examined. 

NOMENCLATURE 

functions of time in a trial solution; 
Hamiltonian in equations (3) and (4), 
Onsager’s functional in equations 
(21-28); 
acceleration in equation (18) arbi- 
trary vector field in equation (67) ; 
acceleration of kth particle; 
heat capacity per unit mass at con- 
stant volume ; 
functional of infinitesimal magni- 
tude, defined in equation (70); 
functional of infinitesimal magni- 
tude, defined in equation (70) ; 
function ; 
function ; 
function ; 
force ; 
force on kth particle ; 
force on kth particle not derivable 
from a potential ; 
function ; 
Biot’s so-called total heat, defined by 
equation (64); 
heat-transfer coefficient on bound- 
ary ; 
Biot’s so-called heat-flow vector, de- 
fined by equation (67); 
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J”, 
J, 
k 
K 
L, 

L? 
L’ 

W’ 

mk? 

MWR, 

n, 
N, 
P( ), 

4i( t)3 

4iCt), 

Q1> 

s*, 

t, 

functional defined by equation (19) ; 
functional of infinitesimal magnitude 
defined by equation (17) ; 
normal flux n J ; 
flux vector ; 
thermal conductivity ; 
linear differential operator ; 
Lagrangian in equation (2), linear 
differential operator elsewhere ; 
adjoint operator ; 
phenomenological coefficient in 
equations (3 l-33) ; 
mass of kth particle ; 
method of weighted residuals ; 
outward pointing unit normal ; 
number of adjustable parameters; 
bilinear concomitant, defined by 
equation (10) ; 
adjustable functions of time in trial 
solution ; 
time derivatives of qi; 
Biot’s so-called generalized thermal 
force, defined in equation (81); 
position of kth particle ; 
thermal conductivity dyadic ; 
boundary (surface) of system; 
rate of entropy accumulation within 
volume ; 
rate of entropy outflow from surface ; 
time ; 
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traction ; 
kinetic energy in equation (2), tem- 
perature elsewhere ; 
stress ; 
function ; 
material velocity; 
idemfactor; 
potential energy in equation (2), 
Biot’s so-called thermal potential in 
equation (68) et seq., interior (volume) 
of system elsewhere; 
virtual work, defined in equation ( 1) ; 
position; 
alias variable ; 
alias variable ; 
alias variable. 

Greek symbols 
a. functions of time in a trial solution; 
Ui* adjustable constants in a trial solu- 

tion ; 

Pi* adjustable constants in a trial solu- 
tion ; 

6, variation operator (subscript denotes 
what is held fixed during variation) ; 

V, gradient operator ; 

c infinitesimally small parameter ; 

P* density ; 

4. function ; 
@, rate of entropy production in equa- 

tions (21-22); functional elsewhere; 
$9 function. 

is not complete without full speci~cation of (if 
the functions with respect to which the variation, 
or differential, is taken, and (ii) any auxiliary 
conditions that must be satisfied as constraints 
when the variation is taken. The functional 
whose variation vanishes is said to be stationary 
relative to (i) those functions with respect to 
which the variation is taken, and (ii) any con- 
straints that are imposed. The stationary pro- 
perty of an integral functional implies by the 
calcuius of variations one or more “Euler 
equations” and “natural boundary and initial 
conditions.” If these match the equations of 
change, constitutive equations, boundary condi- 
tions. and so on, which describe the physical 
behavior of the system, then the variational 
formulation is indeed an alternative description. 
This type of stand-in is commonly called a 
variational principle, ahhough seldom in a 
physical or any other sense is it an ultimate 
basis; it is no more a principle than any other 
equally accurate mathematical description of 
the performance of the same physical system. 

Subscripts 

i-, 
surface quantity ; 
alias variable. 

Superscripts 
* trial solution. 

1. INTRODUCTION 

A VARIATIONAL description of a physical system 
consists of a statement that the variation, or 
functional differential, of a specified functional 
is equal to some fixed value, which can be and 
customarilv is chosen to be zero. The descrintion 

In some instances the varied functional is not 
merely stationary but actually attains a local 
maximum or minimum. The variational prin- 
ciple can then be stated as a superlative-some 
function of the behavior of the system is greatest, 
or least, under certain constraints. This type of 
statement lends itself to teleological speculation 
and holds a singular appeal for many minds as 
the history of variational principles in dynamics 
and quantum mechanics testifies [SO; compare 
24 and 321. Indeed, some statements that in fact 
involve no more than a stationary functiona 
are habitually referred to as “minimum prin- 
ciples,” Hamilton’s principle and the principle 
of least action being the most famous cases in 
point. It appears that the special appeal of 
superlatives has inspired a significant part of the 
search for variational principles in areas outside 
dynamics. 

A variational formulation may be useful in 
summarizing a subject and it may, as Morse and 
Feshbach [34] remark, suggest fruitful analogies 

I 
and generalizations. In dynamics, for example, 
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it may be advantageous to introduce postulates 
about material interactions via a potential, 
Lagrangian, or Hamiltonian function rather 
than as the equivalent constitutive relation for 
the force of interaction. The same authors [34] 
remark that in the development of a subject, the 
differential equations (by which they mean 
equations of change, constitutive equations, and 
so forth-not necessarily in the form of differ- 
ential equations) have generally been worked 
out first and only later have equivalent vari- 
ational formulations been found. This is certain- 
ly the pattern in the areas discussed below. 
Regarding the area of classical mechanics, 
Goldstein’s comment [24] bears repeating : 

It has been pointed out that variational 
principles in themselves contain no new 
physical content, and they rarely simplify the 
practical solution of a given mechanical 
problem. Their value lies chiefly as starting 
points for new formulations of the theoretical 
structure of classical mechanics. For this 
purpose Hamilton’s principle is especially 
fruitful, and to a lesser extent, so also is the 
principle of least action. The others have 
proved to be of little use, except as they have 
led to fruitless teleological speculations. 

Much of the remark is equally true of variational 
principles in other fields. 

A variational formulation leads to the so- 
called variational method of obtaining approxi- 
mate solutions to the problem of predicting 
system performance. The method consists of 
substituting in the stationary functional a trial 
solution containing a number of adjustable 
parameters ; the functional is varied with respect 
to these parameters, which are then so evaluated 
as to make the variation vanish in accordance 
with the variational formulation. One of the 
main advantages of the variational method is 
that in the choice of functional form for the trial 
solution “it permits the exploitation of any in- 
formation bearing on the problem such as might 
be available from purely intuitional considera- 
tion” [34] or from prior experience with related 

problems. Now this is also an outstanding 
advantage of direct approximating schemes such 
as the method of weighted residuals. 

Indeed, the variational method shares this 
and some other advantages of the method of 
weighted residuals [lo, 8, 161. What has been 
overlooked in the search for variational prin- 
ciples is that whereas MWR-the method of 
weighted residuals-an be applied to any 
problem, whether or not it is linear and self- 
adjoint, the variational method is only applic- 
able to those problems for which a variational 
principle exists and has been found, a common 
situation only when the system of equations is 
linear and self-adjoint. (A kind of variational 
formulation is possible for linear, non-self- 
adjoint systems and their adjoints together, as 
advocated by Morse and Feshbach [34, chapters 
3 and 93 ; the method of least squares also 
amounts to a variational formulation involving 
the adjoint, as shown by Mikhlin and discussed 
in the next section.) However, if a genuine 
variational principle is available it may provide 
advantages over MWR: (1) The variational 
integral may represent a physical quantity of 
more use for the needs at hand than the field 
given by the solution, and the variational 
method is likely to approximate this integral 
more accurately than it approximates the solu- 
tion. (2) If the principle is a minimum or maxi- 
mum principle, the variational method provides 
upper or lower bounds on the variational 
integral. (3) If in addition a reciprocal variational 
principle (maximum or minimum) can be 
formulated, both upper and lower bounds can 
be found, and these may be close enough to- 
gether to have real utility. (4) The direct method 
of the calculus of variations may yield proof of 
existence of solutions, a potential advantage 
when an exhaustive study of the mathematical 
aspects of a problem seems indicated. In view of 
these advantages it is not surprising that much 
effort has been expended on the search for 
variational principles for nonlinear and non- 
self-adjoint systems. 

Unfortunately. only relatively few classes of 
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physical systems can be represented by self- 
contained variational formulations, that is, 
without bringing in adjoint or “mirror-image” 
systems. And within each of these classes only a 
small proportion can be represented by mini- 
mum or maximum principles. From a pragmatic 
standpoint the main shortcoming of variational 
formulations is that the variational methods 
which they support provide no approximation 
scheme that cannot be set up more simply and 
more quickly as one of the standard direct 
approximating methods, in particular, one or 
another version of MWR. This criticism is 
elaborated below. 

The whole subject is muddied by the over- 
working of the term, “variational principle,” in 
the literature, where formulations that merely 
resemble classical variational formulations are 
also called variational principles, even though 
they are still farther from being basic physical 
principles in the usual sense. Examples occur in 
recent formulations known as restricted vari- 
ational principles, one instance being the 
“Method of the Local Potential” put forward 
by Glansdorff and Prigogine, and in Biot’s 
“Lagrangian Thermodynamics”. All treat heat 
conduction and other transport phenomena and 
have roots in Onsager’s 1931 variational formu- 
lation of Fourier’s law of heat conduction, a 
constitutive relation. All of the formulations 
named here are taken up after a brief recapitula- 
tion of more conventional variational approach- 
es in the next section. 

Section 3 deals with approximation methods 
based on “restricted variations”, which might 
equally well be called “partial functional differ- 
entials” or “infinitesimal functions” or “quasi- 
variational principles”. It is shown that all of 
these methods lack the special advantages that 
are usually associated with variational prin- 
ciples. It is also shown that they are substantially 
equivalent to the more straightforward method 
of Galerkin, one version of MWR. In the final 
section it is concluded that the recent mutants 
are sterile, at least so far as generation of 
constitutive relations and practical calculations 

are concerned. The search for variational prin- 
ciples has been pushed too far. 

2. VARIATIONAL FORMULATIONS 

An oft-cited advantage of variational prin- 
ciples is that they provide concise statements of 
the physical principles which are reproduced by 
the Euler equations of the stationary functional. 
The leading examples are in the field of particle 
mechanics, which makes an excellent back- 
ground for subsequent discussion. 

D’Alembert’s principle for any system of 
particles is stated in terms of infinitesimals 
called virtual displacements and virtual work 
[see, e.g. 291: the total virtual work is zero for 
all admissible reversible displacements ; i.e. 

where Fk is the net force on the kth particle, 
which has mass mk and suffers acceleration A,,. 
The overbar on 6%’ indicates that the total 
virtual work is a differential form which cannot 
be expressed as the variation of a scalar 
functional. Hamilton’s principle corrects this 
deficiency by integrating virtual work over a 
definite time interval [29] : 

j&i’ dt 3 $(T - I’) dt = SljL dt (2) 
fL fI fI 

where T is the total kinetic energy of the 
particles and V is the potential energy corres- 
ponding to the forces Fk, which have to be con- 
servative. The quantity L = T - I/ is the 
kinetic potential, or Lagrangian; its integral 

A&,dr 
t1 

is a functional of the coordinates which specify 
the configuration of the particles. This functional 
is stationary for all admissible variations of the 
coordinates as functions of time. Provided the 
functional form for the kinetic potential is 
known-which can only be so when the forces 
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are derivable from a potential-H~lton’s 
variational principle, 

6A = 0, (3) 

always leads to the equations of particle motion. 
Consequently it is possible to derive equations 
of motion under various types of conservative 
forces by postulating different forms for the 
Lagrangian, L. This is no longer possible when 
some of the forces FL, cannot be derived from a 
potential, in which case constitutive equations 
for them must be used. Retaining the form of 
Hamilton’s principle one can write 

and call this a “variational principle”. One.,can 
also retreat to d’alembert’s formulation, 6 W = 
0, perhaps calling even it a “variational prin- 
ciple”. This usage is not in line with the classical 
mathematics of variations, because in both 
cases there is no ~~c~io~l which is stutio~ury. 
The di~erential principle of mechanics- 
d’Alembert’s, Gauss’s, Hertz’s, the above dis- 
tention of Hamilton’s-are not genuine vari- 
ational principles, whereas Hamilton’s and other 
stationary integral principles are; the latter are, 
as just indicated, of somewhat more restricted 
applicability. A similar situation occurs in the 
search for variational formulations for con- 
tinuous systems. 

Consider the type of boundary-value problem 
that describes steady-state behavior of many 
linear systems : 

L[dx>l = sbk xin I/ (5) 

ZJ =fW, xon S (6) 

where L is a linear, differential operator and the 
boundary function is given. Is it possible to 
formulate a variational principle with equation 
(5) as its Euler equation? 

It is always possible to write a “principle” of 
the form 

S”J = J [L(u) - g] 6u dV = 0 (7) 
” 

which necessarily implies equation (5) L(U) = g 
in V: But equation (7) embodies nothing more 
than the mere definition of an inexact functionai 
differential: there may or may not exist a, 
functional J which is stationary. If the problem 
is self-adjoint, however, such a functional does 
exist : it is 

J = J @L(u) - g] K(u) dI! 
” 

(8) 

Its first variation with respect to admissible 
stat~functions~ 28, is 

6J = ~~L(~~)K(~) dV + f [+L(u) - g] K(h) dV 
0 ” 

(9) 

and, in virtue of the I(-self-adjointness of the 
operator, L, 

j L(h) K(u) dV = S L(u) K(6u) dV 
” 0 

+ j P(K ; u, 6~) dS. 
0 

(10) 

Thus 

6J = f [L(u) - g] K(h) dV (11) 
V 

provided of course that an auxiliary, linear, 
homogenous operator, K, can be and has been 
so chosen that the bilinear concomitant, P(K; 
u, du), vanishes under the boundary conditions 
that are to be satisfied.? For self-adjoint 
problems, there always exists a functional 
which is stationary-virtually by definition. 
And for non-self-adjoint problems there is no 
variational fo~ulation of the same sort, i.e. 
self-contained. 

An analogy exists between the problem of 
finding a variational principle which has as its 
Euler equation a given differential equation 
and the problem of finding a scalar potential 
which has as its gradient a given vector. A vector 

7 The auxiliary operator is simply unity in the classical 
definition of self-adiointness [cf. 341. The broader definition 
in terms of the k-adjoint-encokxpasses any boundary 
conditions which have essentially setf-adjoint nature that 
would otherwise not be apparent. 
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can be derived from a scalar potential only if it 
is irrotational, of course. The theory of gradient 
mappings teaches that a variational principle 
can be found for linear differential equations 
only if the operator is self adjoint [42]. 

In the case of linear problems that are not self- 
adjoint, it is possible to give a variational 
formulation for the original problem and its 
adjoint, or “mirror image”, coupled inextricably 
together as a system of equations. This approach 
was advocated by Morse and Feshbach [34] and 
has been adopted on occasion [43,45, 311. The 
variational method to which it leads is an 
instance of the method of moments, a version of 
MWR closely related to the Galerkin method 
[13. 161. The second alternative, in the case of 
linear differential systems, is to double the order 
of the differential equation by applying to it the 
adjoint operator. Thus, corresponding to equa- 
tion (5), viz. L(u) = g, the following equation is 
self-adjoint, as may easily be verified : 

L*L(u) = L*(g) (12) 

where L? is the adjoint operator to L. Now 
Mikhlin [33] has shown that the classical 
variational formulation for this self-adjoint 
equation is equivalent to minimizing the positive 
definite integral 

J z j [L(u) - g]’ dV (13) 

This functional of u measures the total squared 
residual by which the function fails to satisfy 
equation (5). Its minimization with respect to 
adjustable parameters in a trial solution-with 
due attention to boundary conditions and 
boundary residuals-is precisely the least- 
squares method, another special case of MWR. 

Minimization of the total squared residual 
applies equally well to non-linear problems; as 
a variational principle it leads to the method of 
least squares as a variational method. In this 
light it has been advocated and tested by 
Becker [l]. But for problems of transient per- 
formance, linear and nonlinear alike, the least- 
squares technique has limited utility because 

each instant of time requires separate treatment 
[14, 161. It is effective when the time course of 
the system is of less interest than its state at a 
particular instant in its evolution [l, chapter 41. 
Thus, the class of nonlinear problems that can 
be given classical variational formulations, much 
less self-contained ones, is severely limited. 
Apart from isolated cases, e.g. discovery in a 
lone case of a “mirror system” analogous to the 
adjoint system [48, 171, the search for stationary 
functionals is fruitless. 

In order to escape the impasse without 
abandoning variational formalism, various 
authors have simply adopted looser definitions 
of “variational principle.” In their lexicon the 
term covers two formulations that are really 
equivalent. By way of illustrating these, con- 
sider the type of problem that describes transient 
performance of many linear systems : 

L[u(x, t,] = g, x in V, t>o (14) 

U = g(x), x in V, t<O (15) 
U = f(x. t). x onS, t>O. (16) 

In the first approach one defines an inexact 
functional differential, or inexact variation, the 
vanishing of which implies the original equation : 

Not uncommonly integration over time is 
omitted, the infinitesimal 6J then being a 
function of time rather than a functional, and 
the infinitesimal 6u having the significance of an 
instantaneous variation better represented by 
&u-matters that are outside the pale of classical 
variational calculus and go unexplained in 
formulations where they are important. Whether 
or not integration over time is performed, the 
characteristic feature of this scheme is that no 
functional J exists whose variation with respect 
to u has the form of equation (17). Because any 
advantages of a true variational principle are 
therefore absent, this type of formulation will be 
called a quasi-variational principle. The need for 
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such a term seems to have gone unfelt. For 
example, the following has been called a vari- 
ational principle for fluid flow [46] : 

~P(F - A).6xdV - SZ :VGxdV 
” 0 

+ft.GxdS=O (18) 
s 

for all virtual displacements, 6x, which satisfy 
the kinematical conditions. (The acceleration A, 
body-force F, stress tensor 2, surface traction t, 
and density p are all functions of position, x, 
and time.) As Serrin [46] pointed out, “The 
reader will observe that . . . [this] variational 
principle is little more than a reformulation of 
the equations of motion. . .“. 

The second approach stems from the idea of 
defining a functional of the state u and its rate 
of change &@t as independent functions and 
then introducing a partial functional differential, 
or “restricted variation”. Generally, however, 
integration over time is omitted and one works 
with an integral that remains a function of time. 
For example, when L is a self-adjoint spatial 
operator, the formalism can run 

au 
Y=Tg (19) 

6,J = j[L(u) - y] 6u dT/ = 0 (20) 

the latter then”implying equation (14).? The 
resemblance to classical calculus of variations 
is superficial, even when this scheme is employed 
for steady-state, non-self-adjoint, boundary- 
value problems. The most lucid advocate of this 
approach in the literature seems to have been 
Rosen [39, 411, who called it a restricted 
variational principle. The characteristic feature 
of this type of formulation is the presence of 
“alias variables” (y for au/& above) which 
though held fixed during the variation have to 
be unmasked immediately after the variation is 
performed. As a result the variational integral is 

t The subscript on the variation symbol 6 indicates what 
tieid is to be held fixed in a restricted variation. 

not stationary, and other advantage of true 
variational principles are lost as well. The 
situation is summarized in Table 1. 

While both of these approaches retain some 
variational formalism and are called here ud hoc 
variational principles, the variational method of 

Table 1. Comparison of ad hoc variational formulations with 
variational principles 

__- 

Quasi- Restricted Classical 
Property variational variational variational 

formulation principle principle 

Applicable to 
nonlinear and 
non-self-adjoint 
problems Yes Yes Rarely 

Variational 
integral exists 
and is defined? No Yes Yes 

Integral is 
stationary in 
calculationst NO No Yes 

Requires explicit 
knowledge of 
basic equations Not 
a priori Yes Yes necessarily 

May be a 
minimum (or 
maximum) 
principle No No Sometimes 

May provide 
upper and lower 
bounds on 
variational 
integral or 
eigenvahie No No O~asionaliy 

t For cases in which all three formulations pertain. 

approximation to which they lead is indis- 
tinguishable from the Galerkin method applied 
to the original equations unadorned, as demon- 
strated by several cases about to be taken up. 
This equivalence is portrayed in Fig. 1. The 
question, then, is whether the variational form- 
alism confers any advantage whatsoever. It is 
known that where a true variational principle 
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Method of Weighted Residuols 

I I I 

ariotional Formulations 

Quasi - LJ Variation 

Local 16‘ II Potential 

I 
I self -adjoint, linear systems_ 

and certain special nonlinear systems 

1~1 

second variation is positive7 

4 
Minimum Principle and 

Rayleigh - Ritz Method 

FIG. 1. Interrelationships of approximation methods for differential systems. 
(1) Applicable only to linear equations. (2) Equivalence shown by Mikhlin [33]. (3) Applicable to all linear equations 
as well as certain special nonlinear equations. (4) Equivalence discussed in [13, 161. (5) In method of moments the 
weighting functions are not the same functions used in the trial solution. whereas in the Galerkin method they are. 
(6) Equivalence shown below and in [I4, 151. (7) Additional conditions must be satisfied to insure the existence of a 

minimizing function. 

exists, Ritz’s method [S] based on the stationary 
integral is equivalent to Galerkin’s method 
[S, lo] ; and when there is a minimum principle. 
the Rayleigh-Rig and Galerkin methods are 
equivalent [12,10,47]. In the latter circumstance 
blind use of the Galerkin procedure would over- 
look the fact that any trial solution yields an 
upper bound on the variational integral-which 
may be an eigenvalue or other quantity of 
greater interest than the solution; this fact is of 
course obvious in the variational formulation 
on which the Rayleigh-Ritz procedure rests. So 

when a true minimum (or maximum) principle 
exists, variational formalism does reveal a 
feature that may be turned to advantage in 
practical calculations. There is, however, no 
such feature in the types of systems for which 
quasi-variational and restricted variational 
formulations have been devised. 

3. RESTRICTED VARIATIONS 

By introducing partial functional differentiaIs, 
or restricted variations, Rosen [39, 411, Glans- 
dorff and Prigogine [22], and others have 
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formulated so-called variational principles. 
These are examined critically here. In each case, 
the variational method based on the restricted 
variational formulation turns out to be either 
Galerkin’s method or a substantially equivalent 
version of the method of moments. The “‘vari- 
ational principles” are then examined for any 
distinctive and redeeming advantages. The dis- 
cussion begins with a review of Onsager’s 
“variation principle” because this early example 
seems to have inspired many of the ud hoc 
variational fo~ulations that are extant and 
forms the starting point for some of them. 

For heat conduction in anisotropic media 
Onsager [35] formulated a variational principle 
that requires the fundamental equation of 
change and the particular constitutive equations 
to be clearly separated. His principle is that for 
certain simple materials the following integral 
of the heat flux and temperature fields 

A(J. T) F i(J) + s*(&) - #(J, J) (21) 

is a maximum with respect to variations of the 
heat flux J under what he called the “con- 
vention” that the temperature distribution T is 
prescribed, i.e. the temperature field is already 
a known function of position (dependence on 
time is not discussed). A functional for systems 
in steady states, A(J, T) remains a function of 
time for transient systems. Its three parts are 
rate of entropy accumulation, outflow, and 
generation, respectively : 

II 

I t JkJ (22) 
@(J, J) = 

2TdV 
0 J 

where% is a known symmetric dyadic that may 
depend on temperature but not on heat flux. 
Accordingly 

A(J,T) =b. p(i) - y]dV (23) 
I’ 

and the partial functional differential of A(J, T) 

with respect to J while holding the function T 
fixed is 

&.A =k. k(h) -y]dV. (24) 

U 

For this partial variation to vanish the “Euler 
equation” is the constitutive relation generally 
known as Fourier’s law for anisotropic media : 

-;VT = 5l.J. (25) 

In the well-known case of isotropic media, for 
which CJt = U k/T (I.3 is the idemfactor), this of 
course reduces to the familiar form of Fourier’s 
law : 

J= -kVT. (26) 

The functional A(J, T) is a maximum so far as 
partial variations with respect to J are con- 
cerned because 

6,(+-i) = - 
s 

f&J. ‘RSJdV < 0 (27) 

v 

(% is presumed to be positive definite ; T is 
absolute temperature). 

It is perfectly clear that Onsager’s variational 
formulation merely reproduces a particular 
constitutive equation for heat flux-Fourier’s 
law-provided the temperature field is already 
known. The formulation just as clearly is not a 
maximum principle, or a genuine variational 
principle at all, when the temperature field is 
unknown, because then 

&A = &,A + 6,, A, 

PA = 6,(6,A) + SJG,A) + &@,A) (28) 

+ 444-A). i 

The partial variation of A with respect to T does 
not vanish in general. Moreover, the negative 
signature of 6,(&A) by no means implies a 
maximum principle. Onsager himself did not 
consider the real problem of calculating heat 
conduction phenomena. These are points neg- 
lected by later authors who have attempted to 
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develop a practicable variational method based 
on an extension of Onsager’s formulation. 

Rosen [39] showed that variational formalism 
can be manipulate to give somewhat different 
restricted variational principles of the same sort 
as Onsager’s. Thus, for transient heat con- 
duction in isotropic media he makes the integral 
{(J . J/Zk)d’V stationary with respect to varia- 
tions in J subject to overwhelming constrains: 
{i) V . J + PC,, 8T,Gt = 0, the equation of change; 
(ii) n . J is specified on the surface S; (iii) k is 
independent of J; and (iv) both T and dT/& 
are known and held fixed throughout the region 
V: The Euler equation is just the constitutive 
relation, J = k V?: This is certainly one of the 
most elaborate representations of Fourier’s law 
to be found anywhere. Rosen went on to 
formulate what he called a more useful vari- 
ational principle which, unlike Onsager’s. re- 
produces the full equation of change with 
Fourier’s law : 

4, s[ pC,TY + i (VT)’ dT/ = 03 1 Y fixed ; 

1’ 12% 

T specified on S ; 

Y = aT/dt after variation ; 

this set of requirements yields the familiar 
differential equation. 

PC”:= V.(kVT). 

Rosen also discussed the variational method 
corresponding to (29). The temperature heid is 
approximate by the finite sum, T* = za,(t) 
j&x), the functions A(x) being a prescribed set, 
and the variation is carried out with the ai as 
variables holding dai/dt fixed. This strategem 
yields a set of ordinary differential equations 
for the a&) and is entirely equivalent to Gater- 
kin’s method, as has been shown [14]. 

Still later Rosen [41] developed a restricted 
variational principle for unsteady-state prob- 
lems in magnetohydrodynamics, with fluid 
properties that depend on the dependent 
variables. The variational integral depends on 
the state variable(s), say tl, its time derivative c?;, 
and their appropriately chosen aliases, a’ and 
&‘. The integral I(@, a’, dr’j is varied with respect 
to CI while holding 01’ and &’ fixed. Following this 
variation the aliases are removed by setting ~1’ = 
c1 and &-’ = h, thereby arriving at the correct 
“Euler equation”. This procedure is precisely 
that used by Hays [25] in his application of the 
local potential method, an attempt to character- 
ize stationary states of grossly nonequilibrium 
systems by something akin to minimum entropy 
production. 

Chambers [7] stated a similar formulation in The so-called theorem of minimum entropy 
which the temperature field is fixed while the production as it is applied to steady-state heat 

variational integral is varied with respect to the 
time derivative, dUi/dt. Herivel [26] attempted 
to formulate a restricted variational principle 
like Rosen’s though at first independently of the 
latter%. The variational integral and method of 
obtaining the correct “Euler equation” used by 
Hays [25] in following what is called the local 
potential method are precisely the same as 
Rosen’s 1391 for unsteady-state conduction 
with constant properties and vanishing heat flux 
on the boundary. 

Later Rosen [40] showed how to develop a 
restricted variational principle for any differen- 
tial equation by identifying the appropriate 
quantities to hold fixed during variation. As he 
found, it may be necessary to hold the very same 
quantity fixed at one place in the variational 
integral while allowing it to vary in others, a 
practice conveniently codified by giving the 
quantity an alias at one place or the other. His 
motivation was approximate solution of non- 
linear differential equations by means of trial 
solutions with adjustable parameters. That the 
scheme flowing from his restricted variational 
principle is Galerkin’s method and can be 
applied with no reference whatsoever to vari- 
ational formalism has gone unremarked. 
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conduction with prescribed boundary tempera- 
ture is [11] 

BSL, [v (+)-jk’ = 0 (31) 
” 

for all variations in temperature which vanish 
on the boundary. If the phenomenological 
coefficient L,, does not depend on temperature 
the Euler equation is 

V. L,V $ =O, or 
[ 01 

L v. $VT =o. 
[ 1 (32) 

If this is to be consistent with the heat-conduc- 
tion equation it is necessary to make the identifi- 
cation 

k = L,,lT’ 

i.e. kT2 = L, = constant. (33) 

Requiring kT2 to be constant is not realistic 
except for very nearly isothermal systems; 
indeed, the theorem of ~nimum entropy pro- 
duction applies only as an approximation to 
systems in steady state very close to equilibrium. 
Consequently many attempts [21, 18, 231 have 
been made to establish a more general minimum 
principle that reduces to the theorem ofminimum 
entropy production in the neighbourhood of 
equilibrium. So far as steady-state heat conduc- 
tion with temperature-independent conductivity 
and conventional boundary conditions is con- 
cerned the system is self-adjoint and there is no 
di~~ulty : Dirichlet’s ~nimum principle and 
its modifications are well-known [see equation 
(40) below]. Even temperature-dependent con- 
ductivity can be handled despite its nonlinear 
character [15]. In any case the stationary 
functional is not the rate of entropy production 
and the formulation is equally applicable near 
and far from isothermal equilibrium. 

But heat conduction is only one irreversible 
process. Recently Glansdorff and Prigogine [22] 
attempted a general variational description of 
irreversible processes by introducing what are 

named Iocal potentials, ostensibly a generaliza- 
tion of entropy production. They state [22] : 

The main practicat importance of these local 
potentials arises from the possibility of deter- 
mining the stationary states through a 
variational principle. 

The variational formulation by Glansdorff and 
Prigogine is not, despite claims to the contrary 
[22,25, 19,441 a minimum principle ; it is not a 
classical variation principle but rather a re- 
stricted variational principle of the type treated 
by Rosen in 1954 [40]. The so-called self- 
consistent approximation scheme based on the 
local potential is the Galerkin method (or in 
some cases a closely related version of the 
method of moments). These features of Glans- 
dorff-Prigogine local potential method have 
been illustrated with the case of steady-state 
heat conduction [lS] ; they have also been 
demonstrated in the case of the coupled Navier- 
Stokes and energy equations for steady states 
[13]. As an aid in evaluating it the method will 
be illustrated here with a simple example: 
unsteady-state heat conduction with Fourier’s 
law as the constitutive relation heat flux, with 
temperature-dependent properties, and with 
Newton’s law of cooling for the boundary 
condition (often called the linear radiation 
boundary condition). Apart from the boundary 
condition the same problem has been treated 
by Hays [25] following the local potential 
approach. 

This example has the structure of equations 
(14-16) above; the equations are : 

pC,,g-V.(kVT)=O in F, t>O (34) 

kn. VT + h&T - T,) = 0 on S, t > 0 (35) 

T = Y(x) in V, t Q 0. (36) 

The initial temperature field Y and the external 
temperature distribution T, are given. (The 
vector n is the outward pointing unit normai 
to the bounding surface S; p, C,, k, and h, 
are, of course. density, heat capacity, thermal 
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conductivity, and heat-transfer ~oef~~ien~ res- 
pectively.) Suppose equations (34) and (35) are 
multiplied by an instantaneous variation of the 
temperature field that appears in them and 
integrated over the volume I/ and surface S, 
respectively; the results aret 

s pC,,;G,Tdl/- 
s 

V.(kVT)&TdV=O (37) 

i> b 

fkn. VT6,TdS + jh,(T - ‘i’J6,TdS = 0. (38) 
s s 

Rearrangement of equation (37) foliowed by 
application of the divergence theorem and 
addition of equation (38) yields the quasi- 
variational statement : 

+ j fh,S,(T - T,)2 dS = 0. (39) 
S 

Although there is no functional being varied in 
equation (39). it does happen to reduce to the 
well-known -variational principle for steffdy- 
state conduction with temperature-unsensitive k 
and h, : 

6Qi = S[-jk(VT)2 dV 
I’ 

+ +[hs(T - T,)’ dS] = 0. (40) 

For unsteady-state conduction with tempera- 
ture-dependent k and h, the quasi-variational 
statement can be converted to a restricted 
variationa principle by introducing an alias 
T,(x, t) for temperature and then setting 

k = k. = k(T,), C,, = Co = C,,( To), 

P = po = P( W. h, = ho = h&T,). (41) 

With aT/& temporarily replaced by aTo/&, 

7 In equations (37) and (38) the symbol 6,T must be 
interpreted as standing for the product q(x) where q(x) 
is an arbitrary function and L is a small quantity independent 
of position, x. This is an instantaneous variation, and both 
6 and q(x) can be chosen ditrerently at different instants of 
time. Compare the remark following equation (17). 

equation (39) is integrated over the time intervat 
0 to t to give a functional of the two functions, T 
and TO, which is the “local potential” for this 
problem : 

@[T, To] Ei ss[ ;ko(VT)’ + P~CJ~ dl/dt 
at 1 0 L’ 

+ i ljh,(T - Q2 dS dt. (421 
es 

The restricted variational principle consists of 
requiring the local potential to be stationary 
with respect to variations of T with T0 held 
fixed-and of course 8T,,Gt as well. In symbols, 
G,,sp[T, T,] = 0. 

To show precisely what this means, let 

&. eo) = @[T + cZ, To + Ed&,]. (43) 

The total first variation of @ is given by [9] 

84 
+ ‘0 at, c=ro=O (3 (44) 

in this case the total variation after rearranging 
and applying the divergence theorem takes the 
form 

f 

&B = 6 rss Z[p,C, 2 - V . (k,VT)J dL’ dt 

e I’ 

+ j 1 Z[k,n . VT + ho(T - ZJ] dS 
BS 

f 

+ 80 

e Iy 

+ ~(POCO) aT, 
dT Tdt -;boCoV dVdt 

0 1 
+ boCoTZo1; dV 

I’ 

t 

+ - T,)2 dSdt . 1 I (45) 

0s 
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For @ to be stationary each of the sets of terms 
within square brackets must vanish; these 
requirements are the Euler equations and natural 
boundary conditions. After the alias for tempera- 
ture is removed by invoking what Glansdorff 
and Prigogine call the subsidiary condition, 

T = To, whence c: = co and Z = Z0 
(46) 

the Euler equations becomes 

pC,g - V.(kVT) = 0 (34) 

with natural boundary conditions 

kn.VT+h,(T-T,)=O 

f$T - lr,)2 = 0 

pC,T = 0 at t=E 

and the essential condition 

(49) 

T = Y(x) at t = 0. (36) 

Now some of these equations occur as the 
original problem, but the solutions to that 
problem do not satisfy equations (4749) and 
the local potential is not stationary-much less 
a minimum-with respect to variation of the 
temperature field from that which satisfies 
equations (3436). While it is true that the 
second partial functional differential of the local 
potential, viz. 

= ji k,(V6T)2 dV dt +I j h,@T)* dS dt 

(50) 

is positive (provided h, 2 0) the total second 
functional differential a2dr, is not necessarily 
positive (compare equation 28). Consequently, 
this does not imply a minimum principle by 

which an u~no~ solution to equations (34 
36), which is to say both T and To, can be approxi- 
mated. 

Formally, the “Euler equation” and “natural 
boundary condition” for the restricted vari- 
ational principle &,,@[T, To] = 0 are 

p&,$-V.(k,VT)=O (51) 

k,n.VT+h,(T-T,)=O. (52) 

When the alias for temperature is removed by 
recalling that T, = r the original differential 
equation and boundary condition, equation (34) 
and (35) are recovered. Obviously this sort of 
variation formulation is fundamentally different 
from the classical type, in which the variation 
of a functional is taken with respect to all of the 
dependent variables. 

An analogy in elementary calculus may 
further clarify the nature of the restricted 
variations employed by Rosen and Glansdorff 
and Prigogine. Consider the equation g(x) = 0 
and let 

f(x) = jg(x’) dx’. 

At one or more places iif replace the variable 
x by y, thereby generating a function of two 
variables,f(x, y). The analog of a true variational 
principle for the solution of g(x) = 0 is the 
statement that df(x, x)/dx = 0, i.e. that the value 
of x must makef(x) stationary. In other words, 
the directional derivative off(x, y) in the direc- 
tion y = x must vanish at a point on the line 
y = x, as occurs at C in Fig. 2. One can easily 
verify that for this to happen it is necessary that 
af/~Yx = -af,@y at the point in question. 
Contrast the analog of a restricted variational 
principle, which is constructed by introducing 
the alias variable in the original equation to 
generate g(x, y) = 0, and then integrating with 
respect to x alone to produce 

f(x, Y 1 = j&L Y) dx’ ; 
E 

the solution to the original equation corres- 
ponds now to the statement that af(x. y)/dx = 0 
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with y = X. That is, the directional derivative of 
f(x, y) in the dff i erent direction, y = constant, 
must vanish at a point on the line y = x, as 
occurs at B in Fig. 2. 

Because the variational integral is not even 
stationary in a restricted variational principle, 
the exact value &O, 0) of the local potential is 
approximated only to the first degree in t by a 
trial solution. Thus (compare equation 44) 

4(E, E) = &(O, 0) + &@ + O(t2). (53) 

In contrast a true variational principle provides 
approximation to the second degree in the 
magnitude factor 6, and this is an important 
advantage over a restricted principle, so far as 
computation of a variational integral of physical 
significance is concerned. 

-I 

/ 
x 

\ 

FIG. 2. Geometric interpretation of restricted variations. 
A: i3f(x,y)/h = 0; B: [af(x, y)/ax],=, = 0. restricted 
variational principle; C: df(x. x)/h = 0, variational 

principle. 

In the so-called self-consistent approximation 
scheme based on the local potential the tempera- 
ture is expanded in terms of a chosen set of 
functions of position and time containing N 
adjustable constants, ai> which are evaluated to 
make 6,,@ = 0.t Thus the trial solution is of the 

t The temperature can also be expanded in terms of a 
given set of functions of position containing undetermined 
functions of time; ordinary differential equations for the 
latter would emerge. To date, however, the local potential 
method seems not to have been applied in this, the fashion 
of Lagrangian thermodynamics (see below). 

form 

T* = T*(x, t; ai). (54) 

The alias temperature is represented by exactly 
the same functional form, but with an ostensibly 
different set of N constants : 

TX = T*(x, t; Bi). (55) 

Substituted in equation (42) these forms make 
the local potential a function of the adjustable 
constants ai and pti The approximate solution 
is found by solving the N equations 

a@(ai- Pi) 

[ 1 aClj 
= 0 

(56) 
a<=pi 

for the equally numerous constants, CQ. These 
equations are, in more explicit form 
f 

g - V . (k* VT*) dV dt 1 6 I’ 
+ JJ g [k*n. VT* 

J 
fJ ” 

+ h:(T* - T,)] dS dt = 0 (57) 

where T* stands for a trial solution as in 
equation (54) .i 

Galerkin’s method is applied to the same 
problem as follows. Temperature is approxi- 
mated by the same form of trial solution, 
equation (54), which is substituted into the 
differential equation and boundary conditions, 
equations (34) and (35), to form what are called 
residuals. The residuals are required to be 
orthogonal, in the functional analysis sense, to 
each of the weighting functions; thus each is 
multiplied by the weighting function aT*/aaj, 
integrated over the volume and surface, res- 
pectively, and added to give exactly equation 
(57). Consequently the approximate solution is 

t Multiplying each of these equations by the correspond- 
ing 6aj and adding the products together regenerates 
equation (39), inasmuch as the variational of the trial 
solution, T*, is by definition 6T* = ~(W*/8aj)Gcl, 
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precisely the same as that obtained by the local 
potential method, and without recourse to any 
variational formalism. 

This is an important distinction. The Galerkin 
method proceeds directly from the original 
equations to obtaining the weighted residuals- 
the left-hand-side of equation (57). The local 
potential method requires intermediate steps of 
deriving or devising anew a local potential and 
then taking its variation. Galerkin’s method is 
plainly more straightforward. The equivalence 
can be shown for any problem treated by the 
local potential method in the same fashion. 

There is another important comparison, 
which concerns the combination of volume and 
boundary residuals. These have been added to 
get equation (57); whether they should be added 
or subtracted is decided in exactly the same way 
as was used to decide whether to add or subtract 
equation (37) and (38) to get equation (39) in the 
derivation of the local potentia1.t This means 
that natural boundary conditions can be accom- 
modated by the Galerkin method with no more 
or less difficulty than they are by any variational 
formulation, including restricted variational 
principles of the sort under examination. 

The local potential method has no advantage 
over the Galerkin method in regard to natural 
boundary conditions, and it is conceptually 
more involved. As has been shown, the local 
potential is not stationary with respect to 
temperature and therefore is unlikely to be as 
closely approximated as a stationary variational 
integral would be by means of a trial solution 
for temperature T and T, = T Moreover, the 
approximate value of the local potential (if 
indeed its value is of any physical significance) 
may equally well be above or below the true 
value and it may increase or decrease with 
successive approximations. These points have 
been obscured by many claims that the local 
potential formulation is a minimum principle 

t Combination of volume and surface residuals has 
proved useful in treating various problems by Galerkin’s 
method [14. 161. 

3F 

[22,25,19,44-j. However true that may be in the 
peculiar situation that the temperature alias To 
is a definite, known function of position and 
time but T is not, it is obviously not true in the 
practical and real problem of solving equations 
(34-36) for the temperature field. In practice 
neither To nor T would be known and both 
would have to be approximated. 

The local potential formulation does lead to 
an iteration scheme for generating an approxi- 
mate solution : the last approximation is adopted 
for To and used to calculate ?: its successor. So 
far this scheme has been applied to one- 
dimensional, nonlinear, steady state heat con- 
duction [20, 491. Even its advocates grant that 
the calculations rapidly increase in complexity. 
with successive approximations. The converg- 
ence of the iteration has recently been examined 
[28]. Final evaluation of the iteration scheme 
will require its application to more difficult 
problems, particularly unsteady-state ones. 

Any information indicating that an approxi- 
mation method converges on the exact solution 
sought is likely to be reassuring to anyone 
attempting to determine stationary states or 
transient evolution of a system. Convergence of 
the Galerkin method has been treated for 
certain classes of linear boundary value and 
eigenvalue problems [33] and for nonlinear 
integral equations [27].t While Glansdorff [19] 
recently mentioned a convergence proof which 
is said to depend crucially on the local potential 
and to pertain to steady-state heat conduction 
in three-dimensions, the type of convergence 
and the details of the proof were left to a future 
publication. It seems likely that the chief source 
of information about the underlying mathe- 
matical aspects of the local potential method 
will be studies of the Galerkin method to which 
it is equivalent. 

In favor of the local potential formalism it can 
be pointed out that the concept of the local 
potential was introduced in connection with 

t See also the review [16] for a listing of other proofs of 
convergence that are related. 
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what is called an evolution criterion [23,22], in 
which context it may have theoretical utility un- 
related to the practical matter of approximate 
solution to problems of predicting system per- 
formance. More recently the local potential has 
been interpreted in the light of fluctuation theory 
[36, 371, but this does not appear to alter the 
status of the local potential formulation as a 
restricted variational principle. While the local 
potential might be said to permit diverse 
irreversible phenomena to be summarized or 
even unified under one evolution criterion, it 
does suffer the anomaly that not one but rather 
several local potentials exist for almost any given 
problem. 

Roberts [38] has shown that to the first order 
of approximation a local potential exists for any 
problem. In fact the local potential depends on 
the manner of introducing alias variables; this 
is strictly a matter of choice, and different choices 
produce different local potentials. For example, 
in simple steady-state heat conduction prob- 
lems three possible local potentials are [15] 

@[7: T,] = ~k0T;[V(1/Tjj2 dl/ (58) 
(’ 

@[T, 7-J = j k07’,‘,(Vl nT)2 dl/ (59) 
U 

@[7: T,] = 1 k,,(VQ2 dl/ (60) 
1’ 

,vhich correspond, respectively, to the rate of 
entropy production, the non-compensated heat 
of Clausius, and the familiar but unnamed 
integrand in Dirichlet’s principle. In the first 
applications of the local potential (60) leads to 
computations which are beaucoup plus simples 
[20] than those to which (58) and (59) lead; the 
latter computations are equivalent to versions 
of the method of moments which are closely 
related but more cumbersome than the Galerkin 
method [15]. While Glansdorff et al. [20] kept 
(60) in the background because it did not occur 
explicitly in their evolution criterion, later users 
have bowed to practical expedience-Hays [25] 
and Schechter [44] employ local potentials 
analogous to (60) exclusively. 

Finally, the local potential method has no 

demonstrated utility in formulating new consti- 
tutive relations for irreversible phenomena. It 
would appear to be more efficient and probably 
safer to relate flux or rate to configurational 
variables in the usual way than to postulate new 
forms of local potential. To date, at least, the 
benchmarks in published discussions of the 
method have been familiar differential equa- 
tions; once these and the boundary conditions 
are in hand there is no practical need for a local 
potential although one or more can be derived 
for the problem of interest. 

4. INEXACT VARIATIONS 

By making use of infinitesimal functions of 
time, a kind of inexact variation, Biot [3, 4, 51 
and others have forced the analysis of heat 
transport and related processes into a mold 
patterned roughly after variational formalism 
employed in mechanics and represented by 
equations (4) and (18) above. Biot’s treatment, 
named Lagrangian Thermodynamics, centers 
on a “variational principle” which is in fact a 
quasi-variational formulation, i.e. the quantity 
required to vanish is neither the variation of a 
functional nor even the instantaneous variation 
of a function. The stated purpose of the “vari- 
ational principle” is to permit approximate 
solution of problems involving nonlinear pro- 
perty variations and boundary conditions. The 
approximation method that emerges from Lag- 
rangian Thermodynamics is equivalent to Galer- 
kin’s method, as the authors have shown in an 
earlier paper [14]. The equivalence was there 
illustrated by the case of heat conduction; here 
convective transport will be considered right 
along with conduction in order to study in 
greater depth the consequences of that equival- 
ence. 

The basic equations when the flow is in- 
compressible and when Fourier’s law is satis- 
factory are 

pC,.~+pC,_u.VT-V.(kVT)=O 

in K t>o (61) 
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kn . VT + h,(T - T,) = 0 

on S, t>o (62) 

T = $4-9 in F/: t < 0. (63) 

The heat-transfer coefficient is‘denoted h, and is 
a known function of position and time on the 
boundary, as is the external temperature field 
T, also. Biot defines the “total heat”, a quantity 
dependent on the choice of temperature datum : 

h= jpC,d’T: (64) 
0 

and he introduces a “heat-flow vector” field, H, 
so defined that 

h=-V.H in li (65) 

n E=kn.VT on S. . at (66) 

That is, 

H = + ~~[~,x~/d~~ + VxA (67) 

where A is an arbitrary vector field: H is not 
uniquely defined. Defining the “thermal poten- 
tiaP’, a function of time, 

F’ = j/TdhdV (68) 
00 

so that 

6,1/’ = j 7’G,hdi/ = - jTV. G,HdV. (69) 
v 

Biot goes on to set up two inexact variation@ 
under the name “variational invariants”: 

His “variational principle” relies on these; it is 

t As in equation (1) above, the overbars in (70) denote 
infinitesimals which cannot be expressed as variations of 
other quantities. 

expressed as a variational invariant 

S,V+8%+&= -fT$.G,HdS (71) 
s 

where 6,H is an instantaneous variation [see 
footnote to equation (37)]. This is a quasi-vari- 
ational statement, for all four terms are functions 
of time and of them only one is generally the 
instantaneous variation of an integral over the 
system. By manipulating equation (69) it is 
possible to rearrange equation (71) to give 

dS=O. s 
(72) 

Formally, the “Euler equation” and “natural 
boundary condition” are 

VT+; g--ha =0 in V 
( ) 

(73) 

(T,- T)++n.z=O on S. (74) 
s 

The divergence of k times equation (73) gives 
(61), while (74) with (66) gives (62); thus the 
quasi-variational formulation does reproduce 
the original differential equation system. 

In the variational method based on this 
formulation, the auxiliary field H is approxi- 
mated by a chosen functional form containing a 
finite number of parameters that are unknown 
functions of time : 

H* = H* [X, t ; 4i(t)]. (75) 

The functions qi(t), which are analogous to the 
variational parameters in the classical vari- 
ationaf method, are named “generalized co- 
ordinates” by Biot, who unfortunately failed to 
distinguish between exact and trial solutions, A 
convenient form for the trial solution is a linear 
expansion in terms of a suitable set of functions 
of position (also employed by Rosen-see 
above) : 

H* = ~ qi(t) fi(X). (76) 
i=l 
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In any case, with the definition HT s aH*,@q, 
which is used by Biot, the variation in H* re- 
sulting from instantaneous variation of the 
values of &) can be written 6,H* = CHT 6q,. 
Accordingly, when the trial solution H*, the 
corresponding h* from equation (65), and the 
solution of equation (64) for T* are all substi- 
tuted in the “variational principle”, equation 
(?2), and the 4i are recognized as independent of 
one another, the variational method emerges as 

aH* 

+ “. aqi s -[ aH* p-T*+--l-n.- 
h: at dS = O. 

1 
s 

(77) 

This is a set of N ordinary, first-order differential 
equations for the N functions 4i(t). Initial condi- 
tions must be deduced from equation (63). 

To apply the Galerkin method to equations 
(73) and (74) one substitutes a trial solution (75) 
into the equations to form the local residuals, 
integrates them with weighting functions Hi* 
and n .HT, respectively, adds the weighted 
residuals and puts the sum equal to zero. The 
result is just equation (77). Hence the approxi- 
mate solution is the same as that obtained by 
Biot’s method, and requires no intermediate 
steps of variational formalism. 

Nearly all published applications of Biot’s 
method (see Lardner’s review [30] have been to 
one-dimensional problems, for which the auxili- 
ary field H is a parallel vector field easily 
obtained by quadrature. However, for two- and 
three-dimensional problems the computations 
become unwieldiy [4] and Biot’s method of 
approximation loses whatever attractiveness of 
simplicity it may hold for one-dimensional 
transport. The difficulty is that one is supposed 
to satisfy equation (65) and (66) exactly and it is 
usually easier to assume a trial solution for the 
temperature field, T*, from which the “total 
heat” field, h*, follows by integration, than it is 
to choose a “heat-flow vector” field, H*. 

Accordingfy H* must be gotten from h* by 
means of equation (67); i.e. by solving a partial 
differential equation. The equivalent Galerkin 
scheme, using H*, suffers this same deficiency, 
but of course the Galerkin method can and 
probably should be applied directly to the 
original transport problem, equations (61-63), 
without introducing the artifice, H. The latter 
plays no essential role and is certainly un- 
necessary for splitting equation (61) back down 
into the equation of change and Fourier’s law in 
order to control the distribution of residual 
between these two parts of the problem [14]. 

From the standpoint of approximate solutions 
Lagrangian Thermodynamics offers no advant- 
ages not already available from MWR. The 
question of its theoretical significance remains. 
Biot’s papers [3, 4, 51 convey the impression 
that his variational formulation is somehow 
linked with irreversible thermodynamics and a 
“general principle of minimum entropy pro- 
duction”. In particular, these papers imply that 
there exist functionals or functions D(H) and 
D,(H)), the variations of which are the infini- 
tesimals 6D and SDS in equation (71) ; Biot refers 
to these hypothetical quantities as volume and 
surface “dissipation functions”. There is also 
the matter of the choice of name, “Lagrangian 
Thermodynamics”. 

In strict logic, Biot’s constructions pertain not 
to the quasi-variational principle, equation (7 1 ), 
but to the commonplace set of equations (77) for 
the finite number, N, of functions yi(t) in a 
particular choice of tria1 soIution. H*. Because 

a aH* aw -- 
adi at =K (> 

(79) 

it foilows that (77) can be written in the form of 
the Lagrangian equations for an inertialess, 
mechanical system of discrete elements with 
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viscous damping and nonconservative as well as 
conservative forces [24] :t 

!!!T+ fm* •l- D3 = 
Gi %i 

QT (80) 

provided the following definitions are made : 

V* = jjT*dh*dC: 
vi? 1 

These are all functions of time which depend on 
the functions qi(t) in the particular choice of H*. 
If I/* is regarded as independent of the func- 
tional form of H* one can write its variation as 

cw* = c (82) 

Only by adopting Biot’s singular definition of 
the variation of a “dissipation function” with 
respect to “generalized coordinates” can one 
write 

S,D* ZE c 
Then one can put the set of equations (77) in yet 
another notational dress, 

6V* + 6,(i)* + D,*) = CQf 6qj (84) 

which bears a purely superficial resemblance to 
the quasi-variational principle, equation (71). 
Biot evidently identified (71) and (84), using the 
same notation and indeed the same equation to 
stand for both, however. It is now clear that 

t The Lagrangian equations for such a system cannot be 
derived as the Euler equations of a true variational principle, 
it should be noted. 

6% + a%S in the former refers to the exact 
solution H while SAD* f Df) in the latter refers 
to a particular form of approximate solution, 
H*, in which only the functions qi(t) can be 
varied. The possibility of defining D* and Df in 
no way implies the existence of quantities D(H) 
and D,(H). 

On the basis of equation (73), which is satisfied 
only by an exact solution H, Biot asserted in 
effect that 

aH* d _ k*u =- k*/jT* 
at 

ow 

and that 

D* = -_5 j k*(VT*)2 dV (86) 
” 

neither of which is in general true. The latter ex- 
pression resembles but is not identical with the 
rate of entropy generation by heat conduction 
[compare equations (22) and (58)] and this 
irrelevant resemblance was cited [5] as the link 
with irreversible thermodynamics. Finally, Biot 
referred to an earlier hypothesis [Z], to which 
the foregoing criticisms also apply :t 

Considering a system which is not in 
equilibrium, its instantaneous velocity direc- 
tion is such that the rate of entropy production 
is a minimum for all possible velocity vectors 
satisfying the condition that the power input 
of the disequilibrium forces is constant. 

In the context of heat transfer in flow systems 
this questionable statement evidently is held to 
mean that 

6,,(D* + D:) = 
d(D* + 1):) 

@i 
S& = 0 (87) 

with the constrain that 

t To begin with, there is a tacit assumption that a 
continuous system can be completely described in terms of a 
finite number of “generalized coordinates”. This assumption 
is paralfeled in [S] by the lack of distinction between 
H[x, r] and H*[x, E; &t)]. 
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where yet another special type of variation must 
be employed-this time variation with respect 
to the Qi with the qi themselves.somehow held 
fixed, as in Chambers’s scheme [7], mentioned 
above. Formally, with a Lagrangian multiplier 
set equal to unity, this does reproduce equation 
(80) and thus equation (77) for the functions qi 
in a trial solution. This is no true minimum 
principle; at the most (87) and (88) amount to a 
restricted variational formulation for the qti 
which is scarcely a principle more general than 
those of the the~odynamics of irreversible 
processes, as has been claimed [S]. Furthermore, 
this “principle” applies only to the approximate 
solution involving H* and qi(t), not the exact 
solution having no q;(t). 

From the standpoints of physical theory and 
mathematical analysis it appears that the only 
significance that can be attached to Biot’s quasi- 
variational formulation and notation in the 
style of Lagrangian equations is as a disguise for 
Galerkin’s method of determining unknown 
functions in a trial solution. 

5. CONCLUSIONS 

The quasi-variational formulations and re- 
stricted variational principles that have ap- 
peared in the literature depart to such an extent 
from the classical calculus of variations that, as 
summarized in Table 1, they do not possess the 
advantages associated with genuine variational 
principles. Behind the formulations of Rosen, 
Glansdorff and Prigogine, Biot, and others lies 
the notion of a general minimum principle 
related to the so-called principle of minimum 
entropy production for irreversible processes. 
No such principle has ever been established. 
however, except for certain isothermal approxi- 
mations to the behavior of quite special systems. 
Onsager’s “variation principle”, so often ad- 
verted to, reproduces a constitutive equation 
relating flux to field configuration (e.g. tempera- 
ture) when the latter is known; it cannot stand 
in for the basic equation of change of that con- 
figuration. From a mathematical point of view it 
appears that no ~e~e~u~ variational principle 

can be devised for transport and transformation 
processes, despite the alluring hope expressed 
by the mathematician Euler in 1744 and not 
forgotten since : 

As the construction of the universe is the most 
perfect possible, being the handiwork of an 
all-wise Maker, nothing can be met with in 
the world in which some maximal or minimal 
property is not displayed. There is. conse- 
quently, no doubt but that all the effects of the 
world can be derived by the method ofmaxima 
and minima from their final causes as well as 
from their efficient ones. 

Having long since added stationary quantities 
to the hoped-for maximal and minimal ones, the 
searchers have had to distort and depose the 
definitions from the calculus of variations in 
order to make progress. The writers hold the 
view that variational formulations arrived at in 
this way are unjustifiably called principles and 
are all too frequently misinterpreted or mis- 
represented and, on the other side, misunder- 
stood. 

The formulations examined here all rest 
directly on basic equations of change and 
familiar constitutive relations and boundary 
conditions. They possess no power in synthe- 
sizing descriptions of new types of systems and 
materials. Constitutive equations and boundary 
conditions are better postulated as such than as 
forms of functions in some integral or in- 
finitesimal functional. 

What practical utility the variational formu- 
lations have resutts from the ~orrespollding 
variational methods for approximate solutions 
of problems of predicting performance of physi- 
cal systems. But in fact these approximation 
schemes are far more readily set up as the 
straightforward Galerkin method or another 
closely related version of the method of weighted 
residuals. That these direct approximation pro- 
cedures avoid completely the effort and mathe- 
matical embellishment of a variational formu- 
lation has not been emphasized adequately in 
the literature. Yet the signi~can~ of the 
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variational formulations is clarified by viewing 
them in the light of MWR. The interrelation- 
ships and equivalences of many of these approxi- 15. 
mation methods are summarized in Fig. 2. 
Apart from self-adjoint, linear systems, which are 
comparatively rare, there is no practical need 
for variational formalism. When approximate 16. 

solutions are in order the applied scientist and 
engineer are better advised to turn immediately 17. 
to direct approximation methods for their 
problems, rather than search for or try to under- 
stand quasi-variational formulations and re- 

18, 

stricted variational principles. 
19. 
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R&m-n examine plusieurs tentatives de formulation de principes variationnels pour des systemes 
non auto-adjoints et non-lit&tires. On trouve que les formulations variationnella ne possedent pas les 
avantages des principes variationnels veritables, principalement parce. que l’integrale variationnelle n’est 
pas stationnaire ou parce qu’il n’existe pas d’inttgrale variationnelle. Les methodes d’approximations 
variationnelles correspondantes sont equivalentes a la methode plus directe de Galerkin ou a une autre 
version de la methode des rtsidus ponder& qui lui est reli&e Ctroitement. Les methodes dues a Rosen 
(variations restreintes), a Glansdorff et Prigogine (potentiel local) et a Biot (thermodynamique la- 
grangienne) sont trait&es. On en conclut que I’on n’a pas besoin pratiquement de formulations 

variationnelles de I’esptce Btudite. 

Znsanunenfaaaung-Verschiedene Versuche, Variationsprinzipien Kir nicht selbst adjungierte und nicht- 
lineare Systeme zu formulieren wurden tiberprtift. Die Variationsformulierungen zeigen einen Mangel 
an echten Variationsprinzipien, vor allem deshalb weil das Variationsintegral nicht station& ist oder 
nicht existiert. Filr die entsprechenden Nlherungsvariationsmethoden wird gezeigt, dass sie Lquivalent 
der etwas direkteren Galerkin-Methode sind oder einer anderen eng verwandten Version der Methode 
der gewogenen Residuen entsprechen. Die Methoden nach Rosen (beschrlnkte Variationen), Glansdorf 
und Prigogine (iirtliches Potential) und Biot (Lagrangsche Thermodynamik) werden behandelt. Als 
Schlussfolgerung wird keine praktische Notwendigkeit fti die hier untersuchten Variationsformulierungen 

erkannt. 

Ammmqm-CAenaHa nonbITKa c*opnsynaposaTb frapwa~uoeene npwri~mmt riecanfoco- 
npfl%eHHblX H HeJtHHetlHblX CUCTeH. HatiAeHo, UTO y napaa~woanbrx @O~U~JIU~OBOK HeT 
IlpeliMy~eCTB HCTElHHbIX BapHaWfOHHblX IlpHHlWlOB, B OCH~BH~M m-8a ~oro, 9~0 BapKa- 

~HOHHbI~UHTerpa~HeRBaReTCRCTa~UOHapHbIMH~UK~-~aTO~O,~TOHeCy~eCTByeTHYrKaKO~O 

Baplla~~OHHO~OuHTerpa~a.~oKa~aHo,~TOcy~ecTByIo~~eBapHa~KoNH~eMeTO~~a~~poKcK- 

MaUKH aKBElBaJIeHTHbI6oJIee~pRMOMyMeTO~y hWpKHHaUJlU ~PJ’rOMy 6nnano CBRaaHHOMy 
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c Km BapuaKTy meToaa smeI.uenKHx paseocTek PaccrdoTpem MeToRn Posewa (orpaKmeK- 
KneBapElaqKK),r~aac~op~aa ~paromaKa(~oKanba~#noTea~as)KljKo (Teprhto~KKamKa 

B JxarpamKeBo# t#OpMyJI%?pOBKe). tiesax BRIBER, YTO B Bapwaqz4oHMx I#OpMyJIUpOBKaX 
paCCMOTpeHHOr0 TWEIIit?T ~paKTKqeCK0~ HeO~XO~nMOCTK. 
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